MTT Assay for Cell Viability

The MTT assay and the MTS assay are colorimetric assays for measuring the activity of enzymes that reduce MTT or close dyes (XTT, MTS, WSTs) toformazan dyes, giving a purple color. A main application allows to assess the viability (cell counting) and the proliferation of cells (cell culture assays). It can also be used to determine cytotoxicity of potential medicinal agents and toxic materials, since those agents would stimulate or inhibit cell viability and growth.



MTT and related tetrazolium salts

MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole), is reduced to purple formazan in living cells. A solubilization solution (usually either dimethyl sulfoxide, an acidified ethanol solution, or a solution of the detergent sodium dodecyl sulfatein diluted hydrochloric acid) is added to dissolve the insoluble purple formazan product into a colored solution. The absorbance of this colored solution can be quantified by measuring at a certain wavelength (usually between 500 and 600 nm) by a spectrophotometer. The absorption maximum is dependent on the solvent employed.
XTT (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) has been proposed to replace MTT, yielding higher sensitivity and a higher dynamic range. The formed formazan dye is water soluble, avoiding a final solubilization step.
Water soluble tetrazolium salts are more recent alternatives to MTT: they were developed by introducing positive or negative charges and hydroxy groups to the phenyl ring of the tetrazolium salt, or better with sulfonate groups added directly or indirectly to the phenyl ring.
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), in the presence of phenazine methosulfate (PMS), produces a formazan product that has an absorbance maximum at 490-500 nm in phosphate-buffered saline.
WSTs (Water soluble Tetrazolium salts) are a series of other water soluble dyes for MTT Assays, developed to give different absorption spectra of the formed formazans.WST-1 and in particular WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium), are advantageous over MTT in that they are reduced outside cells, combined with PMS electron mediator, and yield a water-soluble formazan. Finally, WST assays (1) can be read directly (unlike MTT that needs a solubilization step), (2) give a more effective signal than MTT, and (3) decrease toxicity to cells (unlike cell-permeable MTT, and its insoluble formazan that accumulate inside cells).

MTT Assays significance

These reductions take place only when reductase enzymes are active, and therefore conversion is often used as a measure of viable (living) cells. However, it is important to keep in mind that other viability tests (such as the CASY cell counting technology) sometimes give completely different results, as many different conditions can increase or decrease metabolic activity. Changes in metabolic activity can give large changes in MTT or MTS results while the number of viable cells is constant. When the amount of purple formazan produced by cells treated with an agent is compared with the amount of formazan produced by untreated control cells, the effectiveness of the agent in causing death, or changing metabolism of cells, can be deduced through the production of a dose-response curve.

1 comment:

  1. MTT assays, as the colorimetric assays for assessing cell metabolic activity, are useful for modern molecular biology and the comparison between varying elements then become significant, especially for those viable cells.

    ReplyDelete